de | en
Suche 

Mitglieder

Mitglied auswählen:

Prof. Dr. Alexander Schmitt

Funktionen · Publikationen · Veranstaltungen · Nachwuchsförderung · Forschungsaufenthalte

Publikationen

Indranil Biswas, Norbert Hoffmann, Amit Hogadi, Alexander Schmitt
The Brauer group of moduli spaces of vector bundles over a real curve
Proc. Amer. Math. Soc., 139:4173-4179, 2011

Laura Costa, Norbert Hoffmann, Rosa Maria Miró-Roig, Alexander Schmitt
Rational families of instanton bundles on P^2n+1
Algebraic Geometry, 1(2):229--260, March 2014

Oscar García-Prada, Jochen Heinloth, Alexander Schmitt
On the motives of moduli of chains and Higgs bundles
J. Eur. Math. Soc. (JEMS), 16(12):2617–2668, 2014

T L Gomez, A Langer, A H W Schmitt, I Sols
Moduli Spaces for Principal Bundles in Large Characteristic
In I. Biswas, R.S. Kulkarni and S. Mitra (ed.), Teichmüller Theory and Moduli Problems (Allahabad 2006), volume 10 of Ramanujan Mathematical Society Lecture Notes Series, pages 281--371, Ramanujan Mathematical Society, India, 2010

Jochen Heinloth, Alexander H W Schmitt
The Cohomology Rings of Moduli Stacks of Principal Bundles over Curves
Documenta Math., 15:423--488, 2010

Andreas Laudin, Alexander Schmitt
Recent results on quiver sheaves
Cent. Eur. J. Math., 10:1246-1279, 2012

A Schmitt
A remark on semistability of quiver bundles
Eurasian Math. J., 3(1):110-138, 2012

Alexander H W Schmitt (ed.)
Affine Flag Manifolds and Principal Bundles
Birkhäuser Trends in Mathematics, Springer, 2010

Alexander H W Schmitt
Global boundedness for semistable decorated principal bundles with special regard to quiver sheaves
Journal of the Ramanujan Mathematical Society, 28A:443–-490, 2013

Alexander H W Schmitt
Moduli spaces for principal bundles
In Moduli spaces and vector bundles, volume 359 of London Math. Soc. Lecture Note Ser., pages 388--423, Cambridge Univ. Press, Cambridge, 2009

Alexander H W Schmitt
On the modular interpretation of the Nagaraj–Seshadri locus
J. reine angew. Math., 670:145—172, 2012

Alexander Schmitt
Semistability and Instability in Products and Applications
American Mathematical Society, 2016

A Schmitt
An algebraic proof for Mundet i Riera's polystability criterion in GIT, Appendix to: I. Mundet i Riera, Maximal weights in Kähler geometry: Flag manifolds and Tits distance
In Vector Bundles and Complex Geometry, volume 522 of Contemporary Mathematics, pages 113-129, Amer. Math. Soc., Providence, RI, 2010